Rubik's Cubes and Group Theory

Presented by : Sean Harrell The Richard Stockton College of New Jersey February 18, 2012 Moravian College Student Mathematics Conference

Project Advisor: Dr. Bradley Forrest

How it began...

- It began as a piqued interest at the 2011 Moravian conference
- Sought answers to 2 questions:
 - Is there a mathematical way to "map" a Rubik's Cube?
 - How do we determine Valid and Invalid Configurations on the Rubik's Cube?

Moves

- All moves on the Rubik's cube can be expressed in six basic moves
- A move is a single 90° clockwise rotation
 - U Up
 - D Down
 - F Front
 - B Back
 - L Left
 - R Right

The Structure of the Cube

- To understand the structure of the cube we need to define two terms:
 - 1. Cubie the freely moving pieces on the Rubik's cube
 - 2. Cubicle the "core" non-moving positions where the cubies belong in standard or solved position

The Structure of the Cube

Cubie

Cubicle

• There are six center cubies

• Here they are

• There are 8 corner cubies

• There are 8 corner cubies

• We number the corner cubies as follows:

• We number the corner cubies as follows:

- There are 8! ways to rearrange corner cubies.
- Each corresponds to a **permutation** of the form:
 (1, 2, 3, 4, 5, 6, 7, 8)

The images below correspond to an **upper or U twist** on the Rubik's cube The U twist permutation has the form:

$$(1, 2, 3, 4, 5, 6, 7, 8)$$

$$\downarrow$$

$$(2, 3, 4, 1, 5, 6, 7, 8)$$

We then take the permutation (2, 3, 4, 1, 5, 6, 7, 8)

and express it in the cyclic form: $\sigma = (1 4 3 2) (5) (6) (7) (8) = (1 4 3 2)$

- As a result of function composition:
 (1 4 3 2)=(14)(13)(12)
- We will find later that for every n, its n-cycle can be written as either an even or an odd number of permutations

Cubies Some powers of U

U:
$$\sigma = (1 4 3 2)$$

U²:
$$\sigma = (13) (24)$$

U³: $\sigma = (1 \ 2 \ 3 \ 4)$ U⁴: $\sigma = (1)(2)(3)(4) = 1$

• There are 12 edge cubies

• There are 12 edge cubies

• We number the edge cubies as follows

• We number the edge cubies as follows:

- There are 12! ways to rearrange the edge cubies.
- Each corresponds to a permutation of the form:
 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

The images below correspond to an **upper or U twist** on the Rubik's cube The U twist permutation has the form:

$$(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)$$

 \downarrow
 $(4, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12)$

We then take the permutation (4, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12)

and express it in the cyclic form: $\tau = (1 \ 2 \ 3 \ 4) = (12)(13)(14)$

• We orient the faces of the corner cubies as such

• We orient the faces of the corner cubies as such

• Consider again the "1" and "2" corner cubies

• Here is the orientation of 1 and 2

• If the cubies are oriented differently but not permutated, they will look like this:

• BUT WAIT!

The orientations of the cubicles are still the same

- When orienting the corner cubies we use the notation: $x = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$
- The term, x_n represents the orientation number of the cubie in the **n** cubicle on the "o" cubicle face

So for this example, our notation changes from this: x = (0, 0, 0, 0, 0, 0, 0, 0)

Cubie

Cubicle

• To this:

$$\mathbf{x} = (2, 1, 0, 0, 0, 0, 0, 0)$$

Cubie

Cubicle

• When a U twist is applied, the edge orientations are unaffected

x = (0, 0, 0, 0, 0, 0, 0, 0)

• Similarly, we orient the edge cubies like so

• Similarly, we orient the edge cubies like so

Now consider this orientation of edge cubies "2" and "3"

Cubie

Cubicle

• Their number orientations are as follows:

Cubie

• Their number orientations are as follows:

Cubie

- When orienting the edge cubies we use the notation: $y = (y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10}, y_{11}, y_{12})$
- The term, y_n represents the orientation number of the cubie in the **n** cubicle on the "o" cubicle face

So our notation changes from this: y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Cubie

• To this:

y = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Cubie

Note that when a U twist is applied, the edge orientation is unaffected

y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Configurations

• We can express the U twist with the form (σ, τ, x, y) $\sigma = (1 4 3 2)$ $\tau = (1 2 3 4)$ x = (0, 0, 0, 0, 0, 0, 0, 0)y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

OR

[(1 4 3 2), (1 2 3 4), (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)]

Configurations

- All configurations of the cube can be expressed in this form.
- For example the move M = U L R U can be expressed as
- [(1 4 8 7)(2 6 5 3), (1 6 10 7 3 8 12 5)(2 4),(1, 2, 1, 2, 2, 1, 2, 1,),(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)]

Extracting the details

• Every twist on the Rubik's cube preserves the sum of both the edge cubies and the corner cubies.

 $\Sigma x_i = o(mod_3)$ $\Sigma y_i = o(mod_2)$

- There is an agreement of either even or odd 2-cycles between σ and τ.
- This can be expressed through a sign homomorphism as sgn(σ)=sgn(τ),

where

sgn(even 2-cycles) = 1; sgn(odd 2-cycles) = -1

What this means

- First we define a valid configuration to be a (σ, τ, x, y) form where (σ, τ, x, y) can be attained by moves on the solved Rubik's cube.
- Thus we have that if a configuration is valid, then

sgn σ = sgn τ $\Sigma x_i = o(mod_3)$ $\Sigma y_i = o(mod_2)$

Determining Validity

Is the move U R L U valid?
[(1 4 8 7)(2 6 5 3),(1 6 10 7 3 8 12 5)(2 4),
(1, 2, 1, 2, 2, 1, 2, 1),(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)],

Determining Validity

Is the move U R L U valid? [(1 4 8 7)(2 6 5 3), (1 6 10 7 3 8 12 5)(2 4),(1, 2, 1, 2, 2, 1, 2, 1), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)],It is **valid** because $\sigma = (1 4 8 7)(2 6 5 3) = (1 4)(1 8)(1 7)(2 6)(2 5)(2 3)$ $\tau = (1\ 6\ 10\ 7\ 3\ 8\ 12\ 5)(2\ 4) = (1\ 6)(1\ 10)(1\ 7)(1\ 3)(1\ 8)(1\ 12)(1\ 5)(2\ 4)$ $\Sigma x_i = 1 + 2 + 1 + 2 + 2 + 1 + 2 + 1 = 12 = 0 \mod 3$ $\Sigma y_i = 0 + \dots + 0 = 0 \mod 2$ $sgn(\sigma) = 1 = sgn(\tau)$

An Invalid Configuration

Consider the form

[(1 4 8 7)(2 6 5 3), (1 6 10 7 3 8 12 5)(2 4),

(1, 2, 1, 2, 2, 1, 2, 1), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)]

- This is similar to the move U L R U, except the y₁₂ component has changed to 1
- This means $\Sigma y_i = 1 = 1 \mod 2$
- Since $\Sigma y_i \neq 0 \mod 2$ this is an **invalid** configuration

The Theorem

A configuration of the form(σ,τ,x,y) is valid *if and only if* sgn σ = sgn τ , Σx_i = o(mod_3), and Σy_i = o(mod_2)

Number of Configurations

- From this theorem we can uncover the total possible number of valid configurations
- The possibilities come from:
 - 8! From permuting the corner cubies
 - 12! From permuting the edge cubies
 - 3⁸ From orienting the corner cubies
 - 2¹² From orienting the edge cubies
- So that's

 $(8! \times 12! \times 3^8 \times 2^{12}) \approx 519$ quintillion or 5.19×10^{20}

Number of Configurations

- But this number represents all of the valid and invalid configurations.
- To find the number of valid configurations:
 - Divide by 3 only 1/3 of the possible corner orientations add to o(mod3)
 - Divide by 2 only ½ of the possible edge orientations add to o(mod2)
 - Divide by 2 only ½ of the possible corner and edge permutations agree on sign.

Number of Configurations

So this number becomes
 (8! x 12! x 2¹² x 3⁸) / 12 = 43252003274489856000

References

- Janet Chen. Group Theory and The Rubik's Cube. http://www.math.harvard.edu/~jjchen/docs/Group%20Theory%20an d%20the%20Rubik's%20Cube.pdf>.
- Images taken from the software "CubeTwister" created by Werner RandelShofer, ">http://www.randelshofer.ch/cubetwister/>.

Questions