Rubik's Cubes and Group

Theory

Presented by : Sean Harrell

The Richard Stockton College of New Jersey
February 18, 2012
Moravian College Student Mathematics Conference

Project Advisor: Dr. Bradley Forrest

How it began...

- It began as a piqued interest at the 2011 Moravian conference
- Sought answers to 2 questions:
- Is there a mathematical way to "map" a Rubik's Cube?
- How do we determine Valid and Invalid Configurations on the Rubik's Cube?

Moves

- All moves on the Rubik's cube can be expressed in six basic moves
- A move is a single 90° clockwise rotation
- U - Up
- D - Down
- F - Front
- B - Back
- L- Left
- R - Right

The Structure of the Cube

- To understand the structure of the cube we need to define two terms:

1. Cubie - the freely moving pieces on the Rubik's cube
2. Cubicle - the "core" non-moving positions where the cubies belong in standard or solved position

The Structure of the Cube

Cubies

- There are six center cubies

Cubies

- Here they are

Cubies

- There are 8 corner cubies

Cubies

- There are 8 corner cubies

Cubies

- We number the corner cubies as follows:

Cubies

- We number the corner cubies as follows:

Cubies

- There are 8 ! ways to rearrange corner cubies.
- Each corresponds to a permutation of the form:

$$
(1,2,3,4,5,6,7,8)
$$

Cubies

The images below correspond to an upper or \mathbf{U} twist on the Rubik's cube The U twist permutation has the form:

$$
\begin{gathered}
(1,2,3,4,5,6,7,8) \\
\downarrow \\
(2,3,4,1,5,6,7,8)
\end{gathered}
$$

Cubies

We then take the permutation

$$
(2,3,4,1,5,6,7,8)
$$

and express it in the cyclic form:

$$
\boldsymbol{\sigma}=(1432)(5)(6)(7)(8)=\left(\begin{array}{lll}
1 & 4 & 3
\end{array}\right)
$$

Cubies

- As a result of function composition:

$$
(1432)=(14)(13)(12)
$$

- We will find later that for every n, its n-cycle can be written as either an even or an odd number of permutations

Cubies

Some powers of U
$\mathrm{U}: \boldsymbol{\sigma}=\left(\begin{array}{llll}1 & 4 & 3 & 2\end{array}\right)$
$\mathrm{U}^{2}: \sigma=(13)(24)$

U3: $\boldsymbol{\sigma}=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$
$\mathrm{U}^{4}: \sigma=(1)(2)(3)(4)=1$

Cubies

- There are 12 edge cubies

Cubies

- There are 12 edge cubies

Cubies

- We number the edge cubies as follows

Cubies

- We number the edge cubies as follows:

Cubies

- There are 12 ! ways to rearrange the edge cubies.
- Each corresponds to a permutation of the form:

$$
(1,2,3,4,5,6,7,8,9,10,11,12)
$$

Cubies

The images below correspond to an upper or \mathbf{U} twist on the Rubik's cube The U twist permutation has the form:

Cubies

We then take the permutation

$$
(4,1,2,3,5,6,7,8,9,10,11,12)
$$

and express it in the cyclic form:

$$
\tau=(12334)=(12)(13)(14)
$$

Orienting the Cubies

- We orient the faces of the corner cubies as such

Orienting the Cubies

- We orient the faces of the corner cubies as such

Orienting the Cubies

- Consider again the " 1 " and " 2 " corner cubies

Orienting the Cubies

- Here is the orientation of 1 and 2

Orienting the Cubies

- If the cubies are oriented differently but not permutated, they will look like this:

Orienting the Cubies

- BUT WAIT!

The orientations of the cubicles are still the same

Orienting the Cubies

- When orienting the corner cubies we use the notation:

$$
x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)
$$

- The term, x_{n} represents the orientation number of the cubie in the \mathbf{n} cubicle on the "o" cubicle face

Orienting the Cubies

- So for this example, our notation changes from this:

$$
x=(o, o, o, o, o, o, o, o)
$$

Cubie

Cubicle

Orienting the Cubies

- To this:

$$
x=(2,1,0,0,0,0,0,0)
$$

Cubie

Cubicle

Orienting the Cubies

- When a U twist is applied, the edge orientations are unaffected

$$
x=(o, o, o, o, o, o, o, o)
$$

Orienting the Cubies

- Similarly, we orient the edge cubies like so

Orienting the Cubies

- Similarly, we orient the edge cubies like so

Orienting the Cubies

- Now consider this orientation of edge cubies " 2 " and " 3 "

Cubie

Cubicle

Orienting the Cubies

- Their number orientations are as follows:

Cubie

Cubicle

Orienting the Cubies

- Their number orientations are as follows:

Cubie

Cubicle

Orienting the Cubies

- When orienting the edge cubies we use the notation:

$$
y=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}, y_{8}, y_{9}, y_{10}, y_{11}, y_{12}\right)
$$

- The term, y_{n} represents the orientation number of the cubie in the \mathbf{n} cubicle on the "o" cubicle face

Orienting the Cubies

- So our notation changes from this:

$$
y=(o, o, o)
$$

Cubie

Cubicle

Orienting the Cubies

- To this:

$$
y=(o, 1,1, o, o, o, o, o, o, o, o, o)
$$

Cubie

Cubicle

Orienting the Cubies

- Note that when a U twist is applied, the edge orientation is unaffected

$$
y=(o, o, o)
$$

Configurations

- We can express the U twist with the form ($\sigma, \tau, \mathrm{x}, \mathrm{y}$)

$$
\left.\begin{array}{l}
\sigma=\left(\begin{array}{llll}
1 & 4 & 3 & 2
\end{array}\right) \\
\tau=\left(\begin{array}{lll}
1 & 2 & 3
\end{array} 4\right.
\end{array}\right) .
$$

OR
[(1432), (1234), (o, o, o, o, o, o, o, o), (o, o, o)]

Configurations

- All configurations of the cube can be expressed in this form.
- For example the move $M=U L R U$ can be expressed as
- [(1 487)(2 65 3),(16 1073812 5)(24), $(1,2,1,2,2,1,2,1),,(o, o, o)$,

Extracting the details

- Every twist on the Rubik's cube preserves the sum of both the edge cubies and the corner cubies.

$$
\begin{aligned}
& \Sigma x_{i}=o(\bmod 3) \\
& \Sigma y_{i}=o(\bmod 2)
\end{aligned}
$$

- There is an agreement of either even or odd 2-cycles between σ and τ.
- This can be expressed through a sign homomorphism as

$$
\operatorname{sgn}(\sigma)=\operatorname{sgn}(\tau)
$$

where

$$
\operatorname{sgn}(\text { even } 2 \text {-cycles })=1 ; \operatorname{sgn}(\text { odd } 2 \text {-cycles })=-1
$$

What this means

- First we define a valid configuration to be a ($\sigma, \tau, \mathrm{x}, \mathrm{y}$) form where ($\sigma, \tau, \mathrm{x}, \mathrm{y}$) can be attained by moves on the solved Rubik's cube.
- Thus we have that if a configuration is valid, then

$$
\begin{gathered}
\operatorname{sgn} \sigma=\operatorname{sgn} \tau \\
\Sigma x_{i}=o(\bmod 3) \\
\Sigma y_{i}=o(\bmod 2)
\end{gathered}
$$

Determining Validity

- Is the move U R L U valid?
[(1487)(2653),(1610738125)(24),
$(1,2,1,2,2,1,2,1),,(o, o, o)$,$] ,$

Determining Validity

- Is the move U R L U valid?
[(1487)(2653),(1610738125)(24),
$(1,2,1,2,2,1,2,1),,(0, o, o)$,$] ,$
It is valid because
$\sigma=(1487)(2653)=(14)(18)(17)(26)(25)(23)$
$\tau=(1610738125)(24)=(16)(110)(17)(13)(18)(112)(15)(24)$
$\Sigma \mathrm{x}_{\mathrm{i}}=1+2+1+2+2+1+2+1=12=0 \bmod 3$
$\Sigma y_{i}=0+\ldots+0=0 \bmod 2$
$\operatorname{sgn}(\sigma)=1=\operatorname{sgn}(\tau)$

An Invalid Configuration

- Consider the form
[(1487)(2653),(1610738125)(24),
$(1,2,1,2,2,1,2,1),,(o, o, 1)$,
- This is similar to the move U L R U, except the y_{12} component has changed to 1
- This means $\Sigma y_{i}=1=1 \bmod 2$
- Since $\sum y_{i} \neq 0$ mod2 this is an invalid configuration

The Theorem

A configuration of the form (σ, τ, x, y) is valid if and only if $\operatorname{sgn} \sigma=\operatorname{sgn} \tau, \sum \mathrm{x}_{\mathrm{i}}=\mathrm{o}(\bmod 3)$, and $\Sigma \mathrm{y}_{\mathrm{i}}=\mathrm{o}(\bmod 2)$

Number of Configurations

- From this theorem we can uncover the total possible number of valid configurations
- The possibilities come from:
- 8! From permuting the corner cubies
- 12! From permuting the edge cubies
- 3^{8} From orienting the corner cubies
- 2^{12} From orienting the edge cubies
- So that's

$$
\left(8!\times 12!x^{8} x^{12}\right) \approx 519 \text { quintillion or } 5.19 \times 10^{20}
$$

Number of Configurations

- But this number represents all of the valid and invalid configurations.
- To find the number of valid configurations:
- Divide by 3 - only $1 / 3$ of the possible corner orientations add to $0(\bmod 3)$
- Divide by 2 - only $1 / 2$ of the possible edge orientations add to $0(\bmod 2)$
- Divide by 2 - only $1 / 2$ of the possible corner and edge permutations agree on sign.

Number of Configurations

- So this number becomes
$\left(8!\mathrm{x} 12!\mathrm{x} 2^{12} \mathrm{x} 3^{8}\right) / 12=43252003274489856000$

References

- Janet Chen. Group Theory and The Rubik's Cube. <http://www.math.harvard.edu/-jjchen/docs/Group\%2oTheory\ an d\%2othe\%2oRubik's\%2oCube.pdf>.
- Images taken from the software "CubeTwister" created by Werner RandelShofer, http://www.randelshofer.ch/cubetwister/.

Questions

