Rearrangement Groups of Fractals

Rebecca Claxton

What is a Fractal?

- •Geometric figure that is infinitely self-similar
- •Found throughout nature
- •Used in technology such as antennas to cover more area and respond to more frequencies than simple 1-dimensional lines

Fractals in Nature

Fractal Antenna

Self-Similarity

Groups

•Set *G* with operation * such that:

- G is **Closed** \rightarrow If $a, b \in G$, then $a^*b \in G$
- G is Associative $\rightarrow a^*(b^*c)=(a^*b)^*c$
- *G* has an **Identity** \rightarrow There exists $e \in G$ such that $a^*e=e^*a=a$
- All elements are **Invertible** \rightarrow For all $a \in G$, there exists a^{-1} such that $a^*a^{-1}=a^{-1}*a=e$

Symmetric Group

•S₄=permutations of {1,2,3,4}

•6 basic transpositions to make S₄:

(12)=2134	(23)=1324
(13)=3214	(24)=1432
(14)=4231	(34)=1243

S ₄ elements:			
1234	2134	3124	4123
1243	2143	3142	4132
1324	2314	3214	4213
1342	2341	3241	4231
1423	2413	3412	4312
1432	2431	3421	4321

Dihedral Group

•D₄=symmetries of a square

•Subgroup of S₄

Fractal Symmetries


```
Generating Set
```

•Set of elements of *G* that can be multiplied together to produce all of *G*

•Generating set of S₄: (12), (1234)

• 1→2, 2→1

• 1→2, 2→3, 3→4, 4→1

```
Generating the Basic Transpositions

(12)=(12)

(13)=(1234)^{-1}(12)(1234)^{2}(12)

(14)=(1234)^{-1}(12)(1234)

(23)=(1234)^{-1}(12)(1234)

(24)=(1234)^{2}(12)(1234)^{-2}(12)(1234)

(34)=(1234)(12)(1234)^{-1}(12)(1234)
```

Generating Set

Replacement and Rearrangement Groups

Replacement Rules

•Start with directed base graph G_0

- •Expand by replacing each edge with given replacement rule
- •Forms a group under composition
- •Many but not all fractals can be generated this way

Example: Thompson's Group F

Example: Basilica

Example: Vicsek Fractal

Rearrangement Groups

Rearrangement Groups

Rearrangement Groups

•Given a particular replacement system, the rearrangements form a group under composition

- Two rearrangements make another rearrangement
- Rearranging is associative
- Identity is the base step
- Inverse is the rearrangement in reverse

Vicsek Rearrangement

Goal

- •Find a generating set for all possible rearrangements
- •Hypothesis:
 - Set will correspond to S₄ and F_{3,2}

